Free subgroups in almost subnormal subgroups of general skew linear groups
نویسندگان
چکیده
منابع مشابه
Finite Groups Whose «-maximal Subgroups Are Subnormal
Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...
متن کاملConjugacy Classes in Maximal Parabolic Subgroups of General Linear Groups
We compute conjugacy classes in maximal parabolic subgroups of the general linear group. This computation proceeds by reducing to a “matrix problem”. Such problems involve finding normal forms for matrices under a specified set of row and column operations. We solve the relevant matrix problem in small dimensional cases. This gives us all conjugacy classes in maximal parabolic subgroups over a ...
متن کاملSubgroups of Free Metabelian Groups
In 1954 A. G. Howson proved that the intersection of two finitely generated subgroups of a free group is again finitely generated. Now the free metabelian subgroups of a free metabelian group of finite rank n are quite restricted. Indeed they are again of finite rank at most n. This suggests that there may be an analog of Howson’s theorem for free metabelian groups. This turns out not to be the...
متن کاملLinear programming and the intersection of subgroups in free groups
We study the intersection of finitely generated subgroups of free groups by utilizing the method of linear programming. We prove that if H1 is a finitely generated subgroup of a free group F , then the Walter Neumann coefficient σ(H1) of H1 is rational and can be computed in deterministic exponential time of size of H1. This coefficient σ(H1) is a minimal nonnegative real number such that, for ...
متن کاملThe Nilpotency of Some Groups with All Subgroups Subnormal
Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or minG. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: St. Petersburg Mathematical Journal
سال: 2017
ISSN: 1061-0022,1547-7371
DOI: 10.1090/spmj/1468